ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$
\begin{array}{ll}
\Delta \mathrm{E}=\mathrm{h} v & \mathrm{c}=\lambda v \\
\lambda=\frac{h}{m v} & \mathrm{p}=m v
\end{array}
$$

$$
E=-\frac{2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }
$$

EQUILIBRIUM

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
\mathrm{K}_{\mathrm{w}} & =\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=10^{-14} @ 25^{\circ} \mathrm{C} \\
& =\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH}
\end{aligned}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}
$$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}
$$

where $\Delta \mathrm{n}=$ moles of product gas - moles reactant gas

THERMOCHEMISTRY/KINETICS

$$
\begin{aligned}
& \Delta S^{0}=\sum S^{0} \text { products }-\sum S^{0} \text { reactants } \\
& \Delta \mathrm{H}^{0}=\sum \mathrm{H}_{\mathrm{f}}^{0} \text { products }-\sum \mathrm{H}_{\mathrm{f}}^{0} \text { reactants } \\
& \Delta \mathrm{G}^{0}=\sum \mathrm{G}^{0}{ }_{\mathrm{f}} \text { products }-\sum \mathrm{G}^{0}{ }_{\mathrm{f}} \text { reactants } \\
& \Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\
& =-\mathrm{RT} \ln \mathrm{~K}=-2.303 \mathrm{RT} \log \mathrm{~K} \\
& =-\mathrm{n} \mathfrak{J} \mathrm{E}^{0} \\
& \Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q} \\
& \mathrm{q}=\mathrm{mc} \Delta \mathrm{~T} \\
& C_{p}=\frac{\Delta H}{\Delta T} \\
& \ln [\mathrm{~A}]_{\mathrm{t}}-\ln [\mathrm{A}]_{0}=-\mathrm{kt} \\
& \frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t \\
& \ln k=\frac{-E_{a}}{R}\left(\frac{1}{T}\right)+\ln A
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{E}=\text { energy } & v=\text { velocity } \\
v=\text { frequency } & \mathrm{n}=\text { principal quantum number } \\
\lambda=\text { wavelength } & \mathrm{m}=\text { mass } \\
\mathrm{p}=\text { momentum } &
\end{array}
$$

Speed of light, $\mathrm{c}=3.00 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant, $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
Boltzmann's constant, $\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Avagadro's number $=6.022 \times 10^{23}$ molecules mol^{-1}
Electron charge, $\mathrm{e}=-1.602 \times 10^{-19}$ coulomb
1 electron volt/atom $=96.5 \mathrm{kJmol}^{-1}$

Equilibrium constants

K_{a} (weak acid)
K_{b} (weak base)
K_{w} (water)
K_{p} (gas pressure)
K_{c} (molar concentration)
$S^{0}=$ standard entropy
$\mathrm{H}^{0}=$ standard enthalpy
$\mathrm{G}^{0}=$ standard free energy
$\mathrm{E}^{0}=$ standard reduction potential
$\mathrm{T}=$ temperature
$\mathrm{n}=$ moles
$\mathrm{m}=$ mass
$\mathrm{q}=$ heat
$c=$ specific heat capacity
$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure
$\mathrm{E}_{\mathrm{a}}=$ activation energy
$\mathrm{k}=$ rate constant
$A=$ frequency factor

Faraday's constant, $\mathfrak{J}=96,500$ coulombs per mole of electrons

Gas Constant, $\mathrm{R}=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

$$
\begin{aligned}
& =0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} \\
& =8.31 \text { volt coulomb } \mathrm{mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \left(P+\frac{n^{2} a}{V^{2}}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \\
& \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \times \mathrm{X}_{\mathrm{A}}, \text { where } \mathrm{X}_{\mathrm{A}}=\frac{\text { moles of } \mathrm{A}}{\text { total moles }} \\
& \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{c}}+\ldots \\
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\
& \mathrm{~K}={ }^{\circ} \mathrm{C}+273 \\
& \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
& \mathrm{D}=\frac{\mathrm{m}}{\mathrm{~V}} \\
& u_{r m s}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 R T}{M}}
\end{aligned}
$$

KE per molecule $=1 / 2 \mathrm{mv}^{2}$
KE per mole $=\frac{3}{2} R T$
$\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
molarity, $\mathrm{M}=$ moles solute per liter solution molality $=$ moles solute per kilogram solvent
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{x}$ molality
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{x}$ molality
$\Pi=\mathrm{MRT}$
$\mathrm{A}=\mathrm{abc}$

OXIDATION REDUCTION; ELECTROCHEMISTRY

$$
\begin{aligned}
& Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, \text { where } \mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD} \\
& \mathrm{I}=\frac{\mathrm{q}}{\mathrm{t}} \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT}}{\mathrm{~nJ}} \ln \mathrm{Q}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592}{\mathrm{n}} \operatorname{logQ} @ 25^{\circ} \mathrm{C} \\
& \log \mathrm{~K}=\frac{\mathrm{nE}^{0}}{0.0592}
\end{aligned}
$$

$\mathrm{P}=$ pressure
$\mathrm{V}=$ volume
$\mathrm{T}=$ Temperature
$\mathrm{n}=$ number of moles
$\mathrm{D}=$ density
$\mathrm{m}=$ mass
$\mathrm{v}=$ velocity
$v_{\text {rms }}=$ root mean square velocity
$\mathrm{KE}=$ kinetic energy
$r=$ rate of effusion
$\mathrm{M}=$ molar mass
$\pi=$ osmotic pressure
$i=$ van't Hoff factor
$\mathrm{K}_{\mathrm{f}}=$ molal freezing point depression constant
$\mathrm{K}_{\mathrm{b}}=$ molal boiling point elevation constant
A = Absorbance
$\mathrm{a}=$ molar absorptivity
$\mathrm{b}=$ path length
$\mathrm{c}=$ concentration
$\mathrm{Q}=$ reaction quotient
$\mathrm{I}=$ current (amperes)
$\mathrm{q}=$ charge (coulombs)
$\mathrm{t}=$ time (seconds)
$\mathrm{E}^{0}=$ standard reduction potential
$K=$ equilibrium constant

$$
\text { Gas Constant, } \begin{aligned}
\mathrm{R} & =8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\
& =0.0821 \mathrm{Latm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} \\
& =8.31 \text { volt coulomb } \mathrm{mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Boltzmann's constant, $\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
K_{f} for $\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
K_{b} for $\mathrm{H}_{2} \mathrm{O}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
$1 \mathrm{~atm} \quad=760 \mathrm{~mm} \mathrm{Hg}$
$=760$ torr
$\mathrm{STP}=0.000^{\circ} \mathrm{C}$ and 1.000 atm
Faraday's constant, $\mathfrak{I}=96500$ coulombs per mol of electrons

